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ABSTRACT

=

g Random Wave Forces on a Free-to-Surge Vertical Cylinder (May 1988)

w Charles Blake Sajonia, B.S., University of Washington

i: Chairman of Advisory Committee: Dr. J. M. Niedzwecki

s

N The principal objective of this rescarch is to to gain insight into the applications
.

- and limitations of the relative motion form of the Morison equatinn for the
25 prediction of hydrodynamic forces on a free-to-surge vertical cylinder in random
. waves. Force transfer coefficients are estimated from experimental data using
‘-, regression with autotregressive errors. The best-fit relative motion form of the
. Morison equation results in a root-mean-square error of 24% and a multiple
i correlation coefficient of 0.71, over a 16 second time series. A high frequency force
E: component not accounted for in the Morison equation is quantified. Cross-spectra

are used to show that this residual force can not be duplicated by the relative motion
Morison equation due to the lack of explicit history terms. A force transfer model
containing explicit history terms is presented. The improvement in force prediction
- with increasing memory is illustrated and a memory length is chosen that optimizes
- the tradeoff between model complexity and goodness-of-fit. The new model reduces

the rms error from 24% to 9%, increases the multiple correlation coefficient from

0.71 to 0.83, and captures the high frequency force components not accounted for . ~

in the Morison equation. A simple numerical simulation of a tension leg platform

-

- is performed to illustrate the application and limitations of the results. 4
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A CHAPTER 1
J

INTRODUCTION

o

5 A. The Relative Motion Morison Equation

A The principle objective of this research is to gain insight into the applications
L~ and limitations of the relative motion form of the Morison equation for the
A prediction of hydrodynamic forces on a free-to-surge vertical cylinder in random
\ f: waves. In 1950 Morison, O’Brien, Johnson, and Schaaf (1950) presented an
- ol

N empirical equation which describes the wave induced hydrodynamic loading on

»
»

x

ay=a
»

a fixed vertical pile. Their equation, which is popularly known as the Morison

equation, can be expressed as

>,

KON

D D?
f= C’dpgiulu + Cmpw—4—a, _ (1.1)

"N\
|

where f is the force per unit length acting on the pile, Cy and C,, are force transfer

":;':‘ coefficients, u and a are the horizontal fluid particle velocity and acceleration, p is

) the density of the fluid, and D is the diameter of the pile or cylinder. The total
k- _. wave induced force acting on the cylinder is considered as the sum of a viscous drag
j re force component and an inertia component. When the structure moves in response
; '(:: to hydrodynamic loads, Equation (1.1} is often moditied by using relative velocities
. o and accelerations. The resulting equation is known as the relative motion or wave-
. ) structure interaction form of the Morison equation. This equation can be expressed
: as

f =Cdp—l;iu—éi(u-fi:)JrCapWTDz(a—finfTDia, (1.2)
; Journal model is ASCE Proceedings of the Waterway, Port, Coastal and Ocean
- Engineering Division.
'
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where ¢ and ¢ are the velocity and acceleration of the cylinder, respectively, C, is

the added mass roefficient defined as €, = C,, — 1, and the last term is known as
the Froude-Krylov force which is the result of the local acceleration of the unsteady
flow.

A number of researchers, e.g. (Sarpkaya and Isaacson, 1981), have shown that
the force transfer coefficients Cy and C,,, are not simple constants, but functions of at
least four parameters: cylinder roughness, Reynolds number, Keulegan-Carpenter
number, and time. Thus, the relative motion Morison equation is an engineering

approximation to a complex problem.

B. Flow History

Although the Morison equation contains only instantaneous or time averaged
parameters, the actual hydrodynamic force acting on a submerged body depends on
both the instantaneous and preceding flow conditions (Hamiliton, 1972). However,
most investigators have ignored this history dependence in light of the many
other uncertainties in wave force calculations. Others, such as Keulegan and
Carpenter {1958) and Sarpkaya (1981) have corrected for this error by including an
instantaneous correction term. In periodic flow, the fluid particle kinematics change
with time, but the pattern is continually repeated. Since the preceding cycles are
identical. the history effects can be represented by an instantaneous correction term
instead of an explicit history term. This approach was utilized by Keulegan and
Carpenter (1958) in a series ot seiche-tunk flow experiments. A “remainder force”
AR was introduced to account for the differences between predicted and measured
forces on a submerged cylinder.

Sarpkava (1981) has also quantified AR in a series of one-dimensional periodic

S R TP S PR
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e N T T e Y e e - y




flow experiments. In addition, the limitations of the Morison equation were

illustrated by plotting the instantaneous values of Cy and C,,. It was shown that
Cy and ( , exhibit large variations during a given cycle, particularly for values
of t’.c Keulegan-Carpenter number between 8 and 25, and that accelerating and
decelerating flows, with identical absolute values of the corresponding fluid particle
kinematics, do not exert identical forces on the cylinder. These observations suggest
that AR is partly the result of neglecting the effects of flow history and partly due
to the other simplifications inherent in the Morison equation. Sarpkaya represented
the “remainder force” as an instantaneous correction term given by the Fourier

expansion proposed by Keulegan and Carpenter {1958), or

AR = Cycos(38 — ¢3) + Cs cos(50 — ¢5) + ... + Cp cos(nb — ¢,), (1.3)

where § = ZZt. The use of odd harmonics was justified since the significant force

components occurred at the fundamental frequency and the 3rd and 5th harmonics.
The force transfer model propused by Keulegan and Carpenter (1958) and Sarpkaya

(1981) is then the sum of Equations (1.1) and (1.3), or

7 D?

D |
f= Cdp-z——lu‘iu—rCmp a -+ Cycos(30 — ¢3) + Cs cos(50 — ¢5), (1.4)

where u = —Il7 cos 8, i.e. the flow is periodic with a maximum velocity equal to
[". Although this model reduces the rms residual force by approximately 60%,
it has two limitations: (1) the four parameters which define the correction term
(3. Cs. &3 and @5 have little physical significance, and (2) the flow is assumed to
be periodic. The experiments performed by Keulegan and Carpenter (1958) and

Sarpkayva (1981) prove that AR is not the result of the complications introduced in

wavy flow. e.g. the limitations of the wave theory emploved to estimate the fluid
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particle kinematics, the orbital fluid particle motion, etc. Therefore, attempts to
correct for this error by adjusting the wave theory model may not lead to significant
improvement.

Bird and Mockros (1986) performed a series of 28 tests in which an instru-
mented cylinder was accelerated or decelerated in still water in order to estimate
the relative magnitude of the history force. Four cases were examined: (1) acceler-
ation from rest to a constant velocity, (2) deceleration from a constant velocity to
rest, (3) acceleration from one constant velocity to a higher constant velocity and
(4) reversal from a constant velocity to a similar constant velocity in the opposite
direction. The results verify the findings of Sarpkaya (1981) and suggest that the
relative magnitude of the history force is significant, and at times equal to the max-
imum added mass force during acceleration and over half the steady state drag force
during deceleration for the specific cases studied. The method employed by Bird
and Mockros (1986) to estimate the history force was somewhat arbitrary since it
was presumed that the Morison equation, with constant coefficients, can correctly
predict the instantaneous drag and inertia components. Bird and Mockros proposed
that the introduction of a history force term may account for an important feature
of the fluid dynamics and reduce the variability between measured and calculated
forces. The force subdivision approach was based on a discussion given by Hamilton
(1972). Hamilton suggested that the hydrodynamic force on a submerged body in
nonperiodic flow should be separated into three parts:

(1) the conventional drag component,

(2) the conventional inertia component, and

(3) an explicit history term.
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C. Regression Analysis

Given the time varying force acting on a cylinder and the corresponding fluid
particle kinematics, force transfer coefficients may be estimated in a variety of ways.
The approach employed by most researchers in the past has been ordinary least
squares regression, e.g. Reid (1958), Aagaard and Dean (1969), and Wheeler (1970).
However, new statistical techniques are now available which are particularly suitable
for time series data (Newton, 1988). Therefore, a brief review of regression analysis
and an alternative model fitting technique are presented.

Regression analysis is the fitting of an equation to a set of values. The
equation predicts the response vector y from a function of the regressor matrix
X and parameter vector B, adjusting the parameters such that a measure of fit is
optimized. The method used to estimate the parameters is to minimize the sum
of the squares of the differences between the actual and predicted responses. In
matrix notation

y=XB+e¢ (1.5)

such that B minimizes
S(B)=(y~ XB)T(y - XB). (1.6)

This analysis is based on several assumptions, including: (1) that the expected value
of the errors (€) is zero and (2) that the errors are uncorrelated across observations.
When regression is performed on time series data, the errors are often autocorre-
lated, violating the second assumption and perhaps the first. In this case there
are several new methods to estimate B. One such method is regression with auto-

regressive (AR) errors. This is an iterative procedure in which the following steps

are performed:
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(1) wuse ordinary least squares to find initial estimates of B and ¢,

(2) fit an AR model to ¢,

(3) create a new response vector z and regressor matrix W by applying the AR
filter of step (2) and

(4) return to step (1) using z and W instead of y and X.

This process is repeated until successive iterations result in the same value of AR

order. A more thorough discussion along with the software required to perform the

above analysis is given by Newton (1988).

D. U.S. Naval Academy Experimental Program

In order to gain insight into the applications and limitations of the relative
motion form of the Morison equation, a multiple phase experimental program was
conducted at the U.S. Naval Academy, Hydromechanics Laboratory (Shields and
Hudspeth, 1985). The results from the earlier phases are reported by Dawson
(1984) and Dawson, Wallendorf ard Hill (1986). The data analyzed in this thesis
is the result of an extension of these experiments to include both relative motion
and random wave loading. The USNA test assembly was subjected to random
waves of approximate Bretschneider spectra with a significant wave height of 20
cm and a dominant wave period of 2.38 seconds. The maximum Reynolds number
was approximately 2 x 10* and the maximum Keulegan-Carpenter number was
approximately 50.

The test assembly consisted of a smooth stainless steel rod of one meter length
and 2.54 cm diameter. The cylinder is attached to a free-to-surge aluminum
subcarriage which is supported on two linear bearings and restrained be elastic

springs. The test assembly is illustrated in Figure 1. Instrumentation used in the

-
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experiments included a high frequency sonic transducer, a variable reluctance force
gage and a resistance wave stafl. Instrument signals were passed through an analog
filter with 20 Hz cut-off frequency and an analog-to-digital converter before storing
on computer disk. The acquisition rate was 51.2 samples per second. The accuracy
of the measured surface elevation, surge displacement, and force are estimated to
be 0.02 cm, 0.02 cm, and 0.05 N, respectively (Dawson, Wallendorf and Hill, 1986).

The data is analyzed in the next chapter using time series analysis techniques.
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2.54cm Cylinder

Figure 1.

Sketch of U.S. Naval Academy Test Assembly.
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CHAPTER 1II

DATA ANALYSIS

A. Fluid Particle Kinematics

The first step in analyzing the USNA data is to estimate the fluid particle
kinematics from the measured surface elevation time series. This is accomplished
using harmonic analysis. The measured surface elevation is represented as an infinite
sum of small amplitude waves, with closely spaced frequencies, and random phase

angles

7(2,t) = Y Ancos(knz — wal + 6r), (2.1)

n=1

where 71 denotes the elevation of the water surface above the mean water level, A4,, is
the amplitude of the nth wave component, and k,,, wy, and ¢, are the corresponding
wave number, frequency, and phase (Borgman, 1972). The amplitudes A,, and phase
angles ¢, are calculated most efficiently using the fast Fourier transform (FFT)

algorithm. The horizontal velocity and acceleration at (z,z,t) are then given by

A, cos(kz — wnt + ¢y), (2.2)

_ . coshkn(h+ z)
wz,2,1) = Zz:wn sinh k,h

and

B o cosh kp(h + 2) . B
a(z,z,t) = Z " embh kiR Ay sin(kz — w,t + ¢y,), (2.3)

where the wave number and frequency are related through the dispersion relation
w? = gk, tanh k, h. (2.4)

In Equations (2.1) through (2.3) the Fourier components are summed from

n = 1 to oo, however, wave records generally consist of discrete samples. A sampling
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interval of 1/10th to 1/20th of the dominant wave period is often recommended.

The highest frequency that can be used in the Fourier summation is then

0.5

fo= AL (2.5)

where At is the sampling interval. This frequency is known as the Nyquist
frequency. The dominant wave period of the USNA data is 2.38 seconds. A
sampling interval of approximately 1/15th of the dominant wave period was chosen,
or At = 0.15624 seconds. Therefore, the Nyquist frequency is approximately 3.2
Hz. This sampling interval reduces the amount of data to be processed without
loss of any significant high frequency components. The spectral density estimates
before and after sampling were compared to ensure that the measured spectra were

represented accurately.

B. Regression Model Formulation and Solution

Given the time varying force acting on the cylinder, and the corresponding
fluid particle kinematics and cylinder dispacement, force transfer coefficients can
be estimated using the regression with AR-errors technique described in Chapter 1.
The total force acting on the cylinder at time ¢t may be considered as the linear

combination of three terms: (1) the drag component Fp given by

Fp(t) = pg— /_h‘u(z,t) ~ 2(t)|{u(z,t) — £(t) }dz, (2.6)

(2) the inertia component F given by

Fi(t) _pg—/ {a(z,t) — &(t) }dz, (2.7)

and (3) a force component resulting from the acceleration of the fluid by the cylinder,

Fr given by

Fr(t) = pvi(t), (2.8)
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where h is the submerged length of the cylinder and V is the volume of displaced
fluid. The last term may be combined with the measured force acting on the cylinder

and denoted by F(t) to give
F(t) = CaFp(t) + Cr Fi(t). (2.9)

Equation (2.9) is now in the form of the regression model y = XB + ¢, where
X = (Fp,Fy) and B = (Cq, Cm)T. The best linear unbiased estimate of B results
in:

Ci;=093 and C,, =1.73.

A thorough time series analysis of the errors results in the following observations:
(1) the errors € are highly autocorrelated, (2) the cross-correlations between the
prewhitened error time series and the prewhitened cylinder velocity and surface
elevation time series are relatively small (less than 0.4), and (3) the cross-correlation
between the prewhitened error time series and the prewhitened measured force F is
large (approximately 0.8 at lag zero). Based on these observations one may conclude
that the errors are not the result of the extension of the Morison equation to include
relative motion, but are indicative of a systematic modeling error in the original
Morison equation. The primary source of this error is determined in the following

section.

C. The Best-Fit Relative Motion Morison Equation .

Figure 2 compares the best-fit relative motion Morison equation with the

measured force over a 16 second realization. The Morison equation “tracks”

the measured time series fairly well, but underpredicts the rms force by 21%.
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- . The multiple correlation coefficient, defined as

4 0 y
y R*=1- =%, (2.10)
N Ty
v N

5 where o2 and o2 are the sample variance of the errors and the measured force

t
", % realizations, is 0.77. One can see qualitatively, that the predicted time series is

‘i

S “smooth”, while the measured time series is somewhat “wiggly”. This is due to the

L™y \nl

N g . . . .

Y presence of a series of high frequency force components that the Morison equation

= lacks. This discrepancy is illustrated using the standardized spectral density, defined

N as

~ - S11{w k-1

o In “(2 ) versus w = (2.11)

- o n

q
‘: o for k = 1,...,[3] + 1, where Sy, is the usual two-sided spectral density, 0% is the

WIS . . .

" sample variance, and n is the total number of observations (Newton, 1988). The

s standardized two-sided spectral density estimates for both predicted and measured

. forces are shown in Figure 3.

L -::

S The high frequency residual force is readily apparent, with a peak at approxi-
' . mately five times the fundamental frequency. The cause of this error can be deter-
. mined through cross-spectra analysis.

b Recall that the drag and inertia components serve as the independent vectors

Lr. \.

. in the regression model, while the measured force is the dependent vector. Figures
. 4 and 5 show the cross-spectra of the independent and dependent vectors.

. Figure 4 is a graph of the coherency spectrum Wjz(w) which measures the rela-
R tionship between the amplitudes of the sinusoids in the two univariate realizations
¢

K- - at frequency w. The coherence is given by
! [S12(w)]

. - Wia(w) = , (2.12)
b V511 (w)S22(w)
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where §1; and S;; are the usual two-sided univariate spectral densities, and S;; ic
the complex cross-spectral density. Figure 5 is a graph of the phase spectrum ¢;,(w)
which measures how out of phase the frequency components for the univariate

realizations tend to be. The phase is given by

$12(w) = tan™! —{2223} (2.13)
where
c12(w) = Re {S12(w)} and g2(w) = -Im{S12(w)}, (2.14)

are the cospectral density and the quadrature spectral density, respectively.

Two important observations can be made from the cross-spectra: (1) the
coherence is significant at both the fundamental and 5th harmonic, and (2) a
considerable phase shift exists between the fundamental and the 5th harmonic.
Since the relative motion Morison equation, which contains only instantaneous and
time averaged parameters, is able to capture the fundamental frequency component,
but not the 5th harmonic, one may conclude that the 5th harmonic lags the
fundamental frequency component. That is, the 5th harmonic is the fesult of flow
history. If this is true, then considerable improvement in force prediction can be
achieved through the use of a force transfer model containing lagged versions of
the independent vectors, i.e. history terms. Such a model is presented in the next

section.

D. A Force Transfer Equation with Memory

Recall that the regression model used to estimate the best-fit relative motion

Morison equation is

F(t) = C4Fp(t) + Cn Fi(t). (2.15)
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Instead of the usual approach of using time averaged force transfer coefficients Cy
and C,,, consider F(t) as the sum of a filtered version of the drag component time
series plus a filtered version of the inertia component time series, or

o0

F(t)y= Y eaxFp(t—k)+ > BcFi(t—k), (2.16a)

k=—~o00 k=—00

with the following constraints

0, ifk<0; _f0, ifk<0;
"‘"“{o, ifk>1 ond ﬂ*"{o, if k> 1 (2.165)

where a and 8 are force transfer coefficient vectors, and [ is the maximum lag used
in the model, i.e. [ is a measure of the memory. Note that when [ = 0 Equation
(2.16) reduces to Equation (2.15), the relative motion Morison equation. Thus, the
instantaneous force acting on the cylinder is now represented by the superposition
of a filtered version of the drag component and a filtered version of the inertia
component, both containing only non-negative lags. In this thesis, Equation (2.16)
will be called the “force transfer filters”. The improvement in force prediction, and
the tradeoff between model complexity and goodness-of-fit is illustrated in the next

section.

E. Model Complexity vs. Goodness-of-Fit

Figures 6 through 10 illustrate the improvement in force prediction with
increasing memory. As the memory is increased, the error between rms forces is
reduced while the multiple correlation coefficient R? is increased. These calcualtions
were performed on 27 realizations containing a total of 432 seconds of data
(approximately 180 waves). As is the case with most regression models, there

is a tradeoff between model comglcxity and goodness-of-fit. For the USNA data a
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ten lag memory was chosen as the optimal model. Using the force transfer filters
with [ = 10 reduces the mean rms error from 24% to 9% while increasing the mean
multiple correlation coefficient from 0.71 to 0.83. Since the sampling interval is
At = 0.15624 seconds, the 10 lag memory corresponds to 1.5624 seconds. This can
be nondimensionalized by dividing by the dominant wave period T = 2.38 seconds
to give

l
t— = (.66.
AT 0.66

Thus, the optimal model for the USNA data contains a memory equal to two thirds
of the dominant wave period.

In addition to decreasing the rms residual force by an average of 170%, the
force transfer filters capture the 5th harmonic not accounted for in the Morison
equation. These small amplitude, high frequency force components may govern the
fatigue analysis of offshore structures. As shown in Figure 11, the ten lag memory

force transfer filters duplicate the measured spectral density almost exactly.
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CHAPTER III

NUMERICAL SIMULATION

A. Tension Leg Platformm Model

The purpose of this chapter is to provide a simple example of the application of
the force transfer models discussed in Chapter 2. A tension leg platform is modeled
as a nonlinear, single degree of freedom system (SDOFS) by considering motion only
in the surge direction. Riser and tendon dynamics are neglected. Furthermore, it
is assumed that diffraction and reflection of the waves are negligible. The equation
of motion is established by equating the sum of the inertia, damping, stifiness and

external forces at time ¢;:

mi; + cx; + kx = F; (3.1)

where m is the mass of the platform and deck equipment, ¢ is the damping, k is
the stiffness and F; is the hydrodynamic force resulting from the fluid-structure
interaction.

Following the derivation by Malaeb (1982), tke stiffness is obtained by displac-
ing the platform an arbitrary distance in the surge direction (Figure 12).

Summing the horizontal forces gives
kz = N(To + AT)sin (3.2)

where k is the stiffness in the x-directiou due to an arbitrary surge displacement, N
is the number of tension legs, T is the pretension of each leg and AT is the increase

in tension per leg, given by

AT = k.Ad, (3.3)




=
3
=
=
=
-
hed
=
~
SC
D
[o
-
-
=
s
=
2
Z
Lad
£
<
[
=
A d
o
ey
=
<
S
=
=
T
<
——y
o
wn

Figure 12,




VW e

~ 28
o
R where k. is the equivalent stiffness per leg. In most cases AT is less than 20% of
s the pretension Ty. The change in cable length Ad and the angle of inclination %
W are given by
P

¢ Ad = /& + 27 — d, (3.4)

| and
¢
‘ T
" siny = —_—. 3.5
B VEVEr e (35
{ - Substituting equations (3.3) through (3.5) into Equation (3.2) gives
ho
o

N
: k=(To + kevVd*+22 — kd) —————. 3.6
. To+hevd® +a* = ked) Ty (36)

-
" Thus, the restoring force resulting from an arbitrary surge displacement is a function

y ;;' of the magnitude of the displacement as well as the material properties, pretension,
- and elongation of the tendons. The form of Equation (3.6) is that of a “hardening
‘ spring”. When the surge displacement is small (z << d} Equation (3.6} can be
& reduced to a linear function of :

a E= =30 (3.7)

The restoring force kz vs. z is plotted in Figure 13 using both Equations (3.6) and
(3.7) with k. = 7.0(10") N/m, T, = 4.8(10") N, and d = 200 m. The data listed in

N Table 1 are used for simulation purposes.

s
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Table 1. Typical TLP Data Based on Kirk and Etok (1879

Structural Component

Dimensions

Diameter of 4 corner columns 16 m
| Diameter of 4 middle colurans 3.5 m I
| Diameter of 2 cross braces 6 m
Spacing of corner columns 70 1
Draft, h 35 m
Total mass in air. m 5.4(107) kg
Fluid added mass in surge 3.3(107) kg
| Cable stiffness per leg, k. 7.0(10") N'm
Pretension of each leg. Ty 107 - 108 N
| Water depth 200 - 1000 m
| Critical damping ratio. ¢ 0.00 - 0.15
-

B. Solution Procedure

The nonlinear equation of motion can be solved using one of several direct
integration procedures. The Newmark-3 method is chosen because of its well known
convergence and stability criteria (Newmark, 1962). The Newmark-3 equations are
used to determine the velocity and displacement of the structure at time t,_,; based
on the corresponding value- at time ¢, and the acceleration at time t,_;. Since the

TIIOn Le Dol n oW DT OO Lt etaline Dracedte -

The

advantage of using such a procedure is that any nonlinearities. such as the

TLP stiffness given by Equation (3.6), can easily be included in the analyvsis. The
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Newmark-3 equations are as follows:
Tipy = & + (1 — 7)E; At + &4, At (3.8)
and
Tiv1 = Ti + AL+ (0.5 — B)&;(At)? + BEirq(AL)? (3.9)

where v is taken as 0.5 to avoid spurious numerical damping and 3 is taken as 0.126
to ensure numerical stability with convergence (Newmark, 1962). The assumed

value of Z,., is compared with the corresponding value calculated from the equation

of motion:

. 1 .
Tiy1 = E(Fi-H — c&ity — kzig). (3.10)

Equations (3.8) through (3.10) are solved in an iterative manner until the assumed
and calculated values of Z;,, converge. The process is then repeated for subsequent
time steps.

In order to ensure numerical stability, a two-pass procedure is used wherein
the response of the TLP is first estimated using the relative motion form of the
Morison equation. The drag and inertia force components are then filtered and
superimposed using Equation (2.16) to obtain an adjusted force time series. This
time series is then used as input to the Newmark-8 algorithm, thus obtaining an
adjusted response time series (Figure 14).

C. Simulation Results

The results from two typical numerical simulation cases are presented in Figures

15 through 24. In case one, the random wave profile is scaled such that the maximum

wave height is app-oximately 10 meters. In case two, the same wave profile is used,
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but scaled such that the maximum wave height is 30 meters. The force, surge,
and tension time series are plotted after both the first and second pass of the
Newmark-g algorithm. In both cases, the force transfer filters (2nd pass) result in
a substantial increase in high frequency force components. These components are
more pronounced when the wave height is small and the wave period is short. This
may be due to the phase shift resulting from the spacing of the columns. If the vave
length is equal to twice the column spacing (140 meters), then the resulting forces
on opposing columns will partially cancetl with one another. In all cases, the surge
response is smooth because of the large inertia of the TLP. Since the variation in
tension was represented as a function of the surge displacement by neglecting the
dynamics of the tension legs, the tension time series is also smooth. If the dynamics
of the tension legs were included by modeling the TLP as a MDOFS, then these
high frequency force components should also occur in the tension time series. Such
an analysis could explain the tension leg “ringing” phenomenon-observed in the
Hutton TLP model tests (Mercier, 1982).

Although both cases produce similar results, the effect of the force transfer
filters is more pronounced in case two where the maximum wave height is much
greater than in case one. The principle limitation of the use of these filters is
that the scale effect is unknown at this time. Like the Morison equation, the
force transfer filters should be calibrated for a specific design application, taking
into consideration the wave theory employed to estimate fluid particle kinematics,

the ocean wave design spectra, and the size, shape, and interaction of the various

structural components which comprise the platform.
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- CHAPTER IV
|
CONCLUSIONS

-
?'-‘7‘ In this study, experimental data were analyzed to gain insight into the appli-
! cations and limitations of the relative motion form of the Morison equation for the
' prediction of hydrodynamic torces on a free-to-surge vertical cylinder. A new force
predicticn procedure was presented to account for the effects of flow Listory on the
- instantaneous force. The following conclusions are made based upon this research:
~’ (1) Small scale model tests suggest that the effect of flow history is significant in
- the prediction of hydrodynamic forces.
s
- (2) The relative motion form of the Morison equation can not duplicate the high
N frequency force components measured in small scale model tests.
~ (3) In this study, the inclusion of explicit history terms captured the high frequency
i force components, increased the multiple correlation coefficient from 0.71 to
- 0.83, and decreased the root-mean sguare error from 24% to 9%.
r:: (4) The procedure to include history terms can be incorporated into the response
s simulation of more complex offshore structures such as the TLP.
‘ The results from this research suggest that significant improvements in hy-

drodynamic force prediction can be obtained by including explicit history terms.
- A strong research effort is required to determine the scale effect on these history
. terms. Future research should include both large scale model tests and field data
- analysis. The results m.ay prove to be of great importance in the faiigue analysis of
offshore structures and may explain some of the variability between measured and
:j calculated forces.
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. APPENDIX A

o~ NOMENCLATURE

o

A, amplitude of nth wave component

= a horizontal fluid particle acceleration

C:: B regression parameter vector

= C. added mass coefficient

‘;‘: Cq drag coefficient

- Cnm inertia coefficient

.& ; Cs, Cs remainder force Fourier coeflicients

) c structural damping coefficient

E €12 cospectral density

i D diameter

— d length of tension leg at zero surge displacement
E Ad change in length of tension leg

n F total hydrodynamic force

- Fp hydrodynamic drag component

J' E; hydrodynamic inertia component

~ Fp force resulting from the acceleration of fluid

‘E f hydrodynamic force pe- unit length

" fo Nyquist frequency

w. g acceleration of gravity

- h water depth

- k structural stiffness

.’f': k. equivalent stiffness per tension leg
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wave number of nth wave component

maximum lag used in a filter i.e. memory length
mass of structure

number of tension legs

quadrature spectral density

multiple correlation coefficient

remainder force i.e. error

wave period

pretension of each tension leg

increase in tension per tension leg

time

change in time

sum of the square of the errors

univariate spectral density

complex cross-spectral density

horizontal fluid particle velocity
coherency spectrum

regressor matrix

surge displacement, velocity, and acceleration
response vector used in regression analysis
elevation from mean water level

drag filter coefficients

Newmark-3 parameter

inertia filter coeflicient

Newmark-8 parameter
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o
. € error time series
i o
' Y/ surface elevation time series
o 8 nondimensionalized time defined as 27’"
u::
T 3.141...

"\I::.
©

fluid mass density

sample variance

"r/
<

2%

On phase angle of the nth wave component

D12 phase spectrum

1

[l
(SR

P angle of inclination in the xz plane
w frequency given by 21 for k=1,...,[2] + 1
wy, frequency of the nth wave component

bt v volume of displaced fluid
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APPENDIX B

TIME SERIES ANALYSIS SOFTWARE

The statistical analysis results reported in this thesis were obtained using
TIMESLAB. This computer program is essentially a time series analysis language
consisting of approximately 150 commands. The software is provided with the
text: TIMESLAB: A Time Series Analysis Laboratory (Newton, 1988). Some of
the features which were used in this research include: regression with AR-errors,
a test for white noise, auto- and cross-correlation, coherence and phase spectrum
estimation, nonparametric spectral density estimation, and a test for statistical
independence of two univariate realizations.

The TIMESLAB user can create files or “macros” containing commands.
The macros used to estimate and plot the best-fit relative motion form of the
Morison equation and the best-fit force transfer filters are provided below. Note

that FILTERS.MAC calls another macro, REGAR.MAC, which is not listed here.

REGAR.MAC is provided as part'of the TIMESLAB software package.
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FIL_TERS . MAC

i moti1om Morison egua®ion and the bes

TIMESLAR macro to estimate and plot the pest-f 12

t-f1t force

e Filters using regression with AR-errors.

force
drag componen?t
inertia component

lag

regresson carameters

. instantaneous total force

. instantaneous drag force

. instantaneous 1nertia force
. form regressor matrix

. regress On 1nstantaneous vaiues

. Input: y1 = total
: x1 =
e x2 =
N Ll = ti1me winaCw
: max'ag = maximum
PAUSE
;start
maxo=30
Ifimarp e M, skp}
maxg=m! )
-1 %
y=EXTRACT(y1.,1.1)
x11ag=XTRACT(x1,1.,3)
x21ag=EXTRACT(x2‘1,J)
x=<x1lag,x2lag>
=2
MAZRO(regar.start)
_ABEL (yy)='Mor-son Eguation’
MAXMING, ~, ymaxt . imax, ,mrnt o imin
MAXMIN(yy .n.ymax2, imax, ymin2, 1imin)
vabs=ABS(ymi~*}
ysavesy
y=y+yabs+ymax1
vsavel=sy
_ABEL(y)="
MAxMIle.n.ymax“'war4gﬁwn1.1m7n)
PLOTSIZE( 480, 120,55,3C.8,10,8,.1,0,0)

time=LINE(101,-0.15624,0.15624)

MACRO(error,start)

_ABEL(time)='Time (sec).

PLOTON

PLOT(t1me y.n,0,16,ymin2, ymax1)
LOT(time,yy.n,0, 16, ymin2, ymax1)

PLOTOFF

Cd=peta{1]

Cm=betal2]

LIST(Ca.Cm)

DROMPTOFF

=m1

X 3 .-

o e

min=k-max'ag

. 1oop

-wag ExTRAC
:(X‘
iF
GOTO (loop)

Tix2 K
tlag,x2lag>
(k.eqg.kmin,stop)

Error=#err#%;

R2=eR26’

. plot measured and predicted force
; using the Morison equation

inertia coefficients

;: list drag and

. loop to get lagged vatues

. form regressor matrix
. using lagged values

:stop . end of loop
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ysvsave
CLEAN(xtlag.x2lag,k,1)
MACRO(regar start)

. regress with history terms

LABZ iwy im FTF watn slage Laa Memcr,’

;= .save"
CABE_ (= ’

MAXMINGyy N, ymax2,
MACRClerror star+)
LAEE_(time)="Time
P_CTON

trime ., n.CLo16. ,minl vmaxt)
ime,yy,n,C.16, yminZ, ymax1)

rmax ., yminZ,iming

(sec). Error=serrs%; R2=8R26
PiCt Mmeasurec anc prea-cted
using tne force transfe-

‘orce
filters

;; ERROR:

Macreo to compute the rms error and multiple corretation
T coefficient.
- Input: ysave = Measured Force
L yy = Predicted
r~ = jength of arrays
PALSE
.starzt

yrms=MMULT (ysave,ysave,1,n, 1)
yrms={yrms/n}*0.5

YYrms=MMULT (yy.yy, 4,
yyPMmE=cyyrms 7.5

n, 1)

mrms=yrms/[ t]

prms=yyr~ms[1]
clean{yrms,yyrms)
error={mrms-prms)/mrms=*100
err=_

err.zerror

delta=error-err
IFl{gdeita.1t.0.5,skip)
err=err+1

(Sk1iD

rhe=CORRIres . n,30.0,1,se2,per)

~nc=C0RR(y.,n,30.C,'.5v2,.per)
2= O-sel2’/s,2

Be b S A R . .

)

e PR RS -t »” »
PR AT AN AT TS PR LY ] L ‘AA,‘\’- ‘\-"h'\‘ w.\. \ SRS LS
fon'ufnﬁufﬁhu N :I‘ " ’ B Pt e T Pl 'w‘“i\,s. v %‘ et

Ehe L2 LB B » A £

L




mmm'. "““"“N !"“!”'E'!‘E'U“!'!'!'! '!'!EHHW'}R‘F_‘FJF'F'W.V'w'v'v SN PO O TR T R TUR R YO U TR

-

'\
»
[ Y

S atet
P

.
T |

:-l.r 'a‘ﬁ 1- "x !

AN |

'

PLIEE Y

F i

-.v.}

1'_‘-; ."f'

Ty

53

VITA

Born in Seattle, Washington, Charles Blake Sajonia graduated from the Uni-
versity of Washington in May 1982 with a Bachelor of Science in Civil Engineering
and was commissioned as an Ensign in the United States Navy Civil Engineer Corps.
He has served with Amphibious Construction Battalion Two in Norfolk, Virginia,
and as officer in charge of Construction Battalion Unit 409 in Long Beach, Cali-
fornia. He commenced study towards a Master of Science in Ocean Engineering at
Texas A&M University in January 1987.

Upon completion of his Master of Science degree, he will attend the Navy
Diving and Salvage School in Panama City, Florida, and subsequently serve as the
Hyperbaric Facilities Division Director at the Naval Medical Research Institute in
Bethesda, Maryland.

His military awards include the Navy Commendation Medal, Navy Achieve-

Medal, aud e Joint Meritorious Unit Award. He is a member of the Ameri-

et
can Society of Civil Engineers and the Society of American Military Engineers. His

permanent address is 1325 North 44th Street, Seattle, Washington, 98103.

WG TR AN W o L%l R L G N e A D I N R T G L P .y ‘
) \x\-\?"‘l-"- \“‘N\‘f' '*'} ety "‘"‘-’-‘.h".r"\-'.‘.*"."'\"-.r.r *'-"“ ‘)- J-“' el
-0 .. P WY D A A 2




